

THE PROJECT

Third Party Testing of DPI's Proprietary Injection Molded UHMW Parts

In further testing of one of our proprietary Injection Molded UHMW formulations against standard extruded UHMW sheet stock, we continue to see incredible durability results. Through third party lab testing, a large study was conducted to ensure that DPI's injection molded UHMW parts and components would perform as well as parts that are produced from standard sheet stock UHMW, which is commonly used in high wear part applications. The specific parts used in this testing were from our line of Injection Molded UHMW drag paddles, which are designed for use in grain handling systems in this case.

THE CHALLENGE

High Wear Parts: Injection Molded UHMW vs. Extruded Sheet

High wear parts are essential to many applications and industries. Because of this, material scientists and engineers are always searching for better wearing materials and analyzing for performance and wear life. High wear parts regularly have to be replaced, so minimizing the cost of these items is very important to our customers. With this in mind, an outside lab tested both our injection molded UHMW parts and extruded sheet stock UHMW parts for: abrasion resistance, tensile properties, deflection under load, deflection with a cyclical load, and hardness.

THE RESULTS

Uncompromised Performance and Cost Savings is Achieved

Third party testing and the resulting data proved that DPI's Injection Molded UHMW parts outwear parts made from standard extruded UHMW sheet stock. In fact, in this drag paddle testing, our Taber abrasion wear index was less than half of that of standard extruded sheet at 72.8 versus 164.

ABRASION RESISTANCE TEST

SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

TEST EQUIPMENT: Teledyne Taber Abrasion Tester, Model #: 1750, SN: 20221336

TEST PROCEDURE: Testing performed in accordance with ASTM D4060-19.

CONDITIONED: Yes (48 Hours) **TEMPERATURE/HUMIDITY:** 70.2°F @ 47.8%RH

ABRADANT: CS 17 LOAD: 1000 Grams SUCTION: Yes

WHEELS REFACED AT START: Yes DURING TEST: Every 1000 cycles

WEAR CYCLES: 1,000 TEST TEMP/HUMIDITY: 70.5°F/ 46.3%RH

Test	Weight Before (mg)	Weight After 1,000 Cycles (mg)	Loss (mg)	Wear Index				
1	123206.8	123134.0	72.8	72.8				
2	123660.3	123589.5	70.8	70.8				
3	123122.3	123047.6	74.7	74.7				
	AVERAGE							

Note: Identification of tested specimen(s) was provided by the client. Test run at 72 rpm, ± 2 rpm.

KS/mlb Karl Schmitz, Director Materials Testing

ABRASION RESISTANCE TEST

SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

TEST EQUIPMENT: Teledyne Taber Abrasion Tester, Model #: 1750, SN: 20221336

TEST PROCEDURE: Testing performed in accordance with ASTM D4060-19.

CONDITIONED: Yes (48 Hours) **TEMPERATURE/HUMIDITY:** 70.2°F @ 47.8%RH

ABRADANT: CS 17 LOAD: 1000 Grams SUCTION: Yes

WHEELS REFACED AT START: Yes DURING TEST: Every 1000 cycles

WEAR CYCLES: 1,000 TEST TEMP/HUMIDITY: 70.5°F/ 46.3%RH

Test	Weight Before (mg)	Weight After 1,000 Cycles (mg)	Loss (mg)	Wear Index				
1	84815.6	84615.7	199.9	199.9				
2	85021.7	84873.9	147.8	147.8				
3	85182.5	85038.3	144.2	144.2				
	AVERAGE							

Note: Identification of tested specimen(s) was provided by the client. Test run at 72 rpm, ± 2 rpm.

KS/mlb Karl Schmitz, Director Materials Testing

REPORT OF MECHANICAL TEST

SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

SUBJECT: Mechanical Properties-Tensile

SPECIFICATION: ASTM D638-22

SPECIMEN TYPE: Type 1

INSTRUMENT: INSTRON 5500R BLUEHILL 3- Wedge Grips SPECIMEN CONDITIONING: ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]	Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]	Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]
1	4250	150	17800	16	4410	85	21900	31	4430	150	20300
2	4410	110	16300	17	4380	120	23000	32	4240	120	15800
3	4450	100	14700	18	4270	150	13700	33	4300	96	19400
4	4410	130	19800	19	4440	130	22600	34	4380	98	17700
5	4230	230	19100	20	4430	190	17600	35	4340	140	17400
6	4310	180	16200	21	4300	96	13800	36	4230	130	19300
7	4260	150	14400	22	4470	140	20900	37	4330	140	17100
8	4380	110	20600	23	4400	230	19600	38	4310	110	20300
9	4360	95	16200	24	4540	97	16200	39	4310	110	17500
10	4410	120	16800	25	4330	150	19600	40	4420	130	19700
11	4290	130	14800	26	4070	62	17900	41	4260	150	27300
12	4380	94	21100	27	4160	92	16500	42	4340	110	16700
13	4390	110	19300	28	4530	77	18800	43	4360	140	21400
14	4390	110	21900	29	4160	53	16700	44	4350	110	18800
15	4250	150	14700	30	4140	180	20500	45	4190	160	13800
			М	ean					4333	123	18344
	STD Deviation										2840

REPORT OF MECHANICAL TEST

SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

SUBJECT: Mechanical Properties-Tensile

SPECIFICATION: ASTM D638-22

SPECIMEN TYPE: Type 1

INSTRUMENT: INSTRON 5500R BLUEHILL 3- Wedge Grips **SPECIMEN CONDITIONING:** ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]	Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]	Test	Tensile Stress [psi]	Elongation [%]	Modulus [psi]
1	3540	380	22700	16	3560	310	24500	31	3600	400	20700
2	3570	370	29500	17	3740	300	21100	32	3600	370	20400
3	3470	340	37600	18	3780	390	21700	33	3580	410	20200
4	3700	410	23300	19	3710	310	23400	34	3560	320	45400
5	3720	390	25900	20	3670	400	22600	35	3610	320	22400
6	3400	386	22900	21	3650	370	21800	36	3650	340	23600
7	3510	350	25400	22	3750	390	22000	37	3480	440	18400
8	3550	380	25300	23	3760	390	21400	38	3560	380	18900
9	3450	360	24100	24	3740	410	23600	39	3570	340	19900
10	3420	350	22600	25	3730	370	15500	40	3560	380	19900
11	3460	320	22500	26	3700	320	26400	41	3620	370	20100
12	3530	370	21300	27	3650	390	15000	42	3380	340	29800
13	3640	370	23400	28	3670	370	24400	43	3380	390	22300
14	3680	390	22000	29	3690	370	23500	44	3530	400	22600
15	3590	360	25100	30	3520	310	35800	45	3570	360	24600
			N	lean					3596	366	23678
STD Deviation									106	32	5250

REPORT OF TEST

SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

SUBJECT: Flex Strength SPECIFICATION: ASTM D790

INSTRUMENT: INSTRON 5500R BLUEHILL 3

SPECIMEN CONDITIONING: ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)	Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)	Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)
1	5460.2	119690.0	0.890	16	5463.8	121507.0	0.905	31	5409.5	123498.6	0.915
2	5732.6	136919.8	0.875	17	5655.1	131286.9	0.880	32	5466.0	121565.5	0.895
3	5824.5	139611.6	0.870	18	5453.0	128776.8	0.890	33	5426.0	124515.8	0.905
4	6930.1	164860.8	0.890	19	5530.3	130362.7	0.885	34	5626.3	128960.9	0.900
5	5596.8	133948.7	0.895	20	5636.7	129214.9	0.890	35	4873.5	107838.9	0.910
6	5655.0	121959.2	0.910	21	5428.6	114493.3	0.920	36	5623.9	128570.5	0.935
7	5430.6	123043.7	0.875	22	5443.1	124230.3	0.925	37	5473.6	122441.3	0.935
8	5617.1	133176.4	0.890	23	5523.2	125246.0	0.905	38	5506.8	121618.7	0.910
9	5691.3	133128.9	0.890	24	5335.1	118524.6	0.900	39	5218.4	116609.7	0.925
10	5594.0	122811.8	0.885	25	5515.5	116784.9	0.955	40	5393.0	123107.3	0.915
11	5353.1	125238.9	0.905	26	5537.8	126998.5	0.920	41	5562.0	119119.5	0.950
12	5684.1	130416.0	0.890	27	5535.8	123498.8	0.939	42	5706.8	127893.6	0.900
13	5505.6	129315.4	0.905	28	5535.4	122834.8	0.930	43	5259.7	120226.7	0.915
14	5086.7	109318.4	0.925	29	5553.4	125344.9	0.910	44	5405.6	123584.9	0.910
15	5476.9	129874.5	0.910	30	5495.0	114527.2	0.955	45	5408.2	114700.7	0.945
	Mean									125137.7	0.908
STD Deviation								271.5	9016.5	0.021	

REPORT OF TEST

SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

SUBJECT: Flex Strength **SPECIFICATION:** ASTM D790

INSTRUMENT: INSTRON 5500R BLUEHILL 3

SPECIMEN CONDITIONING: ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

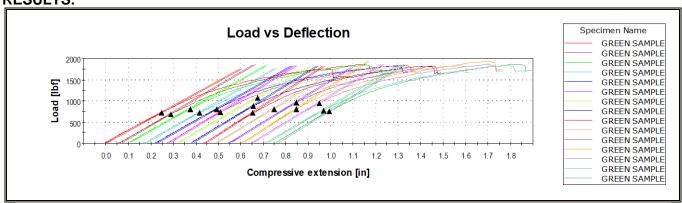
Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)	Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)	Test	Flex Stress [psi]	Flex Modulus [psi]	Flex Extension at Max Load (in)
1	4476.1	81833.9	0.955	16	4466.7	75930.7	0.990	31	4209.1	78459.3	0.980
2	4722.1	87770.9	0.965	17	4461.0	78747.3	0.995	32	4354.9	81272.5	0.965
3	4603.4	84243.5	0.960	18	4573.9	85022.6	0.985	33	4291.5	73483.9	1.005
4	4527.4	77890.6	0.985	19	4509.6	82618.4	0.960	34	3894.9	68318.6	0.980
5	4171.1	76866.5	0.975	20	4316.9	79210.6	0.970	35	4194.7	74524.2	1.000
6	4344.3	81056.8	0.990	21	4227.3	76472.3	0.965	36	4123.5	74037.7	0.965
7	4070.3	76424.4	0.975	22	4413.9	80330.1	0.985	37	4439.1	77796.7	0.985
8	4391.9	80756.7	0.970	23	4292.5	78389.9	0.980	38	5251.3	93276.8	0.990
9	4519.9	85551.3	0.995	24	4322.2	78693.9	1.000	39	4138.4	72883.1	0.985
10	4561.1	85335.0	0.975	25	4101.4	75688.4	0.975	40	5126.9	89196.1	0.965
11	4501.5	82964.4	0.935	26	4286.8	71309.7	0.985	41	4799.5	87713.0	0.970
12	4407.8	81802.2	0.975	27	4307.4	77820.8	0.985	42	4477.6	80925.0	0.970
13	5006.0	92298.0	0.940	28	4516.6	80639.6	0.985	43	4229.1	76650.5	1.005
14	4596.1	85348.9	0.960	29	4720.4	84767.2	1.010	44	4278.0	78241.1	1.010
15	4628.0	85790.8	0.965	30	4463.4	80952.8	0.950	45	4171.5	74516.5	1.005
				Mean					4433.0	80307.2	0.978
STD Deviation									266.9	5332.3	0.018

REPORT OF MECHANICAL TEST

SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

SUBJECT: Paddle Load Test

INSTRUMENT: Testing was performed on the above parts using an Instron 5500R


Universal Testing Machine, S/N H3483

TEST CONDITION: 70°F / 45%RH

PROCEDURE: The paddle was supported around the outer edges and an axial load was

applied to the center bolt connect area.

RESULTS:

Test	Load at Yield (Offset 0.01 in) [lbf]	Extension at Yield [in]	Test	Load at Yield (Offset 0.01 in) [lbf]	Extension at Yield [in]	Test	Load at Yield (Offset 0.01 in) [lbf]	Extension at Yield [in]
1	724	0.251	6	735	0.240	11	963	0.306
2	686	0.212	7	1073	0.350	12	806	0.251
3	807	0.268	8	882	0.265	13	956	0.300
4	722	0.254	9	713	0.221	14	778	0.264
5	801	0.276	10	815	0.247	15	756	0.236
				814	0.263			
		110	0.035					

KS/mrh

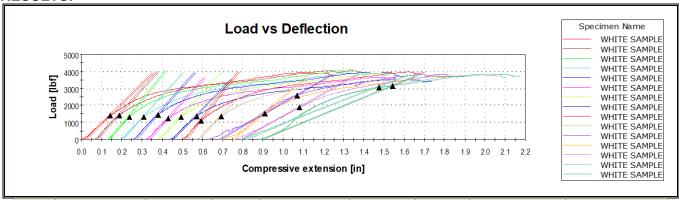
Karl Schmitz, Director Materials Testing

REPORT OF MECHANICAL TEST

SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

SUBJECT: Paddle Load Test

INSTRUMENT: Testing was performed on the above parts using an Instron 5500R


Universal Testing Machine, S/N H3483

TEST CONDITION: 70°F / 45%RH

PROCEDURE: The paddle was supported around the outer edges and an axial load was

applied to the center bolt connect area.

RESULTS:

Test	(Offset 0.01 in)	at Yield [in]	Test	(Offset 0.01 in)	at Yield [in]	Test	Load at Yield (Offset 0.01 in) [lbf]	Extension at Yield [in]
1	1392	0.197	6	1209	0.135	11	2599	0.453
2	1422	0.126	7	1299	0.116	12	1534	0.228
3	1313	0.120	8	1358	0.162	13	1871	0.334
4	1296	0.127	9	1104	0.091	14	3082	0.670
5	1449	0.134	10	1354	0.132	15	3160	0.669
				1696	0.246			
		STI	679	0.197				

KS/mrh

Karl Schmitz, Director Materials Testing

REPORT OF MECHANICAL TEST

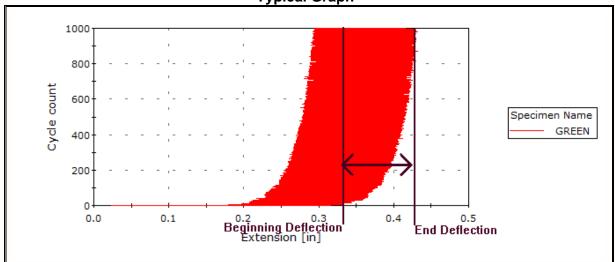
SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

SUBJECT: Paddle CYCLE Load Test

INSTRUMENT: Testing was performed on the above parts using an Instron 5500R

Universal Testing Machine, S/N H3483

TEST CONDITION: 70°F / 45%RH


PROCEDURE: The paddle was supported around the outer edges and an axial load

between 100-500 lbs was applied at a rate of 1 cycle per second for a total

of 1000 cycles.

RESULTS:

Typical Graph

Test	Deflection at 1 st Cycle Inches	Deflection at 1000 th Cycle Inches	Increase of Deflection at end of Test Inches	Test	Deflection at 1 st Cycle Inches	Deflection at 1000 th Cycle Inches	Increase of Deflection at end of Test Inches
1	0.230	0.303	0.073	9	0.300	0.407	0.107
2	0.208	0.285	0.077	10	0.193	0.279	0.086
3	0.254	0.331	0.077	11	0.168	0.250	0.082
4	0.222	0.303	0.081	12	0.171	0.252	0.081
5	0.230	0.331	0.101	13	0.174	0.251	0.077
6	0.222	0.287	0.065	14	0.164	0.236	0.072
7	0.140	0.202	0.062	15	0.193	0.279	0.086
8	0.230	0.309	0.079		Mean		0.080

Karl Schmitz, Director Materials Testing

KS/mrh

REPORT OF MECHANICAL TEST

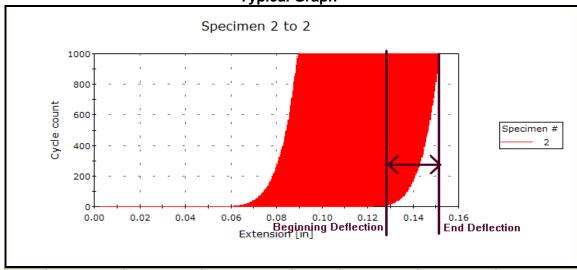
SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

SUBJECT: Paddle CYCLE Load Test

INSTRUMENT: Testing was performed on the above parts using an Instron 5500R

Universal Testing Machine, S/N H3483

TEST CONDITION: 70°F / 45%RH


PROCEDURE: The paddle was supported around the outer edges and an axial load

between 100-500 lbs was applied at a rate of 1 cycle per second for a total

of 1000 cycles.

RESULTS:

Typical Graph

Test	Deflection at 1st Cycle	Deflection at 1000 th Cycle	Increase of Deflection at end of Test	Test	Deflection at 1st Cycle	Deflection at 1000 th Cycle	Increase of Deflection at end of Test
1	0.037	0.056	0.019	9	0.159	0.19	0.031
2	0.130	0.159	0.029	10	0.157	0.174	0.017
3	0.130	0.15	0.02	11	0.166	0.182	0.016
4	0.195	0.212	0.017	12	0.122	0.147	0.025
5	0.125	0.146	0.021	13	0.057	0.091	0.034
6	0.130	0.146	0.016	14	0.14	0.167	0.027
7	0.134	0.15	0.016	15	0.175	0.197	0.022
8	0.190	0.209	0.019		Mean	0.022	

Karl Schmitz, Director Materials Testing

REPORT OF TEST

SAMPLE ID: 12" Injection Molded Paddle-Green – Diversified Plastics Inc.

SUBJECT: Hardness Test

SPECIFICATION: ASTM D785

INSTRUMENT: Rockwell R Scale

SPECIMEN CONDITIONING: ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

RESULTS

ROCKWELL HARDNESS -R Scale

Reading	Hardness HRR	Reading	Hardness HRR	Reading	Hardness HRR
1	61	6	62	11	61
2	60	7	61	12	60
3	60	8	60	13	59
4	61	9	60	14	59
5	59	10	60	15	61
	60.2				

Karl Schmitz-Director Materials Testing CWI 92120161/D17.1 1910011I ACCP VT Level II GI:PE 280554

KS/mrh

REPORT OF TEST

SAMPLE ID: 12" Extruded Paddle-White – Cut from sheet

SUBJECT: Hardness Test

SPECIFICATION: ASTM D2583

INSTRUMENT: Barcol Impresser

SPECIMEN CONDITIONING: ASTM D618 Procedure A—Condition 40/23/50

TEST CONDITION: 73°F/50%Rh

RESULTS

ROCKWELL HARDNESS -R Scale

Reading	Hardness	Reading	Hardness	Reading	Hardness				
1	66	6	65	11	67				
2	65	7	65	12	64				
3	65	8	65	13	66				
4	66	9	65	14	66				
5	68	10	66	15	67				
	Average								

Karl Schmitz-Director Materials Testing CWI 92120161/D17.1 1910011I ACCP VT Level II GI:PE 280554

IIA Lab Services – St. Louis, warrants that the testing services provided herein have been performed, findings obtained and reports prepared in accordance with generally accepted testing laboratory principles and practices, subject to generally accepted margins of error for the instruments used in performing the tests. No other warranties are either expressed or implied. No opinions, conclusions or warranties are rendered by IIA Lab Services – St. Louis as to fitness of the sample for any particular purpose other than compliance with the specific code standards to the extent that such code standards are specifically set forth on the front of this report.

These tests were conducted in accordance with the standards and procedures specified. The analysis and/or tests have been made and report prepared, based upon results from specific samples identified and supplied by the client or their representatives. IIA Lab Services – St. Louis assumes no responsibility for, nor makes any warranties for any extrapolation of data from the test results and relating such test results to any batch, lot or material from which IIA Lab Services – St. Louis had no control of sample acquisition.

This report is furnished in strict confidence for the exclusive use of the client or their representative, and no distribution of all or part of the report shall be made to third parties without the prior written approval of the company or individual ordering the work. Official reports will be provided only by IIA Lab Services – St. Louis and will contain a watermark to certify authenticity. Revision or modification of these reports by anyone other than IIA Lab Services – St. Louis is prohibited. A hard copy will be provided on request, for a fee.

If during or after the performance of these tests it is necessary for IIA Lab Services – St. Louis to recreate reports, assemble materials, gather additional information, or perform other work with regard to these test results to assist in the preparation for any investigation, civil proceeding, or criminal action, regardless of who makes such a request or issues a subpoena, client shall reimburse Laboratory for out of pocket expenses incurred in relation to such work. Client further agrees to compensate Laboratory at a rate of \$400.00 per hour for any such work which is required, including any time devoted to testifying in depositions, at hearings, or in court.

Only tests requested by the client are those that are set forth on the front of this report. There may be additional tests which could be performed on the sample but which client has not requested IIA Lab Services – St. Louis perform. Client releases and holds IIA Lab Services – St. Louis harmless for any damages which may have been discovered, avoided, or mitigated as a result of any additional testing not requested by client.

IIA Lab Services – St. Louis will dispose of samples 30 days after issuance of a formal report, unless specifically requested in writing by the client or their representative to return the samples to them. Samples may be stored at IIA Lab Services – St. Louis for an extended period of time, provided a written agreement incorporating monetary considerations is executed.

DPI is the Only Source for Injection Molded UHMW Plastic Parts, Providing Unparalleled Benefits of Wear Resistance, Corrosion and Chemical Resistance, and Low Friction

THE BENEFITS OF DPI'S PROPRIETY INJECTION MOLDED UHMW-PE

- Extremely durable, yet lightweight, engineered plastic material
- An excellent material for parts that require structural strength, low friction, lubricity, abrasion resistance, and corrosion resistance
- Proprietary injection molding process reduces production time and costs – an advantage to your parts supply chain

LEARN MORE

Discover the Possibilities With Plastic From DPI

If you have UHMW parts that need to deliver longer wear life and help you reduce part costing, these test results confirm that it's time to give us a call.

Learn more about innovative plastics solutions from Diversified Plastics.

Visit dpiplastics.com or call 406-543-6653

